3.171 \(\int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=98 \[ \frac {40 a^4 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^4 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^4 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {8 a^4 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

40/3*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a^4*sin(d
*x+c)/d/cos(d*x+c)^(3/2)+8*a^4*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/3*a^4*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2757, 2636, 2641, 2639, 2635} \[ \frac {40 a^4 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^4 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^4 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {8 a^4 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^4/Cos[c + d*x]^(5/2),x]

[Out]

(40*a^4*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^4*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (8*a^4*Sin[c + d*x]
)/(d*Sqrt[Cos[c + d*x]]) + (2*a^4*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {5}{2}}(c+d x)} \, dx &=\int \left (\frac {a^4}{\cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^4}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {6 a^4}{\sqrt {\cos (c+d x)}}+4 a^4 \sqrt {\cos (c+d x)}+a^4 \cos ^{\frac {3}{2}}(c+d x)\right ) \, dx\\ &=a^4 \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx+a^4 \int \cos ^{\frac {3}{2}}(c+d x) \, dx+\left (4 a^4\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+\left (4 a^4\right ) \int \sqrt {\cos (c+d x)} \, dx+\left (6 a^4\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {8 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {12 a^4 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^4 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 a^4 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a^4 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+2 \left (\frac {1}{3} a^4 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\right )-\left (4 a^4\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {40 a^4 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^4 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 a^4 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a^4 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 70, normalized size = 0.71 \[ \frac {a^4 \left (5 \sin (c+d x)+24 \sin (2 (c+d x))+\sin (3 (c+d x))+80 \cos ^{\frac {3}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{6 d \cos ^{\frac {3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^4/Cos[c + d*x]^(5/2),x]

[Out]

(a^4*(80*Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] + 5*Sin[c + d*x] + 24*Sin[2*(c + d*x)] + Sin[3*(c + d*x)
]))/(6*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

fricas [F]  time = 2.74, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a^{4} \cos \left (d x + c\right )^{4} + 4 \, a^{4} \cos \left (d x + c\right )^{3} + 6 \, a^{4} \cos \left (d x + c\right )^{2} + 4 \, a^{4} \cos \left (d x + c\right ) + a^{4}}{\cos \left (d x + c\right )^{\frac {5}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((a^4*cos(d*x + c)^4 + 4*a^4*cos(d*x + c)^3 + 6*a^4*cos(d*x + c)^2 + 4*a^4*cos(d*x + c) + a^4)/cos(d*x
 + c)^(5/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\cos \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^4/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 0.86, size = 292, normalized size = 2.98 \[ \frac {8 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{4} \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-14 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+7 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{3 \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^4/cos(d*x+c)^(5/2),x)

[Out]

8/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^4/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+10*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1
/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-14*sin(1/2*d*x+1/2*c)^4*co
s(1/2*d*x+1/2*c)-5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),
2^(1/2))+7*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*co
s(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\cos \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^4/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

mupad [B]  time = 0.84, size = 145, normalized size = 1.48 \[ \frac {2\,\left (12\,a^4\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+19\,a^4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^4\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{3\,d}+\frac {8\,a^4\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a^4\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cos(c + d*x))^4/cos(c + d*x)^(5/2),x)

[Out]

(2*(12*a^4*ellipticE(c/2 + (d*x)/2, 2) + 19*a^4*ellipticF(c/2 + (d*x)/2, 2) + a^4*cos(c + d*x)^(1/2)*sin(c + d
*x)))/(3*d) + (8*a^4*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c +
d*x)^2)^(1/2)) + (2*a^4*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin
(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**4/cos(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________